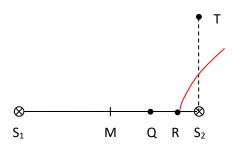

Teacher notes Topic C

An instructive problem on interference

 S_1 and S_2 are two sources of sound emitting identical waves in phase. The distance between the sources is 4.0 m.

- (i) The dotted line is the perpendicular bisector of the line joining the two sources. Explain what a sound sensor will record as it is moved along this dotted line.
- (ii) Point Q is on the line joining the two sources. The path difference at Q is 2.0 m. Determine the distance S_1Q .
- (iii) Point Q is a point of destructive interference. There is one point P of destructive interference between M and Q and one point R between Q and S₂. Determine the wavelength of sound.
- (iv) State the distance between P and R.
- (b) Point T is on a line perpendicular to the line S_1S_2 3.0 m from S_2 .

- (i) Determine what is observed at T.
- (ii) Show that there is one point of destructive interference between T and S₂.
- (iii) Calculate the path difference at this point.


Answers

(a)

- (i) Waves from the sources arrive with zero path difference leading to constructive interference so a maximum in intensity will be observed.
- (ii) $S_1Q S_2Q = 2$ and $S_1Q + S_2Q = 4$, giving $S_1Q = 3.0$ m.
- (iii) The path difference at Q is $(n+\frac{1}{2})\lambda$. Point P corresponds to n=0 so Q corresponds to n=1. Hence $(1+\frac{1}{2})\lambda=2.0 \Rightarrow \lambda=\frac{4}{3}\approx 1.3 \,\mathrm{m}$.
- (iv) It is one wavelength, 1.3 m.

(b)

- (i) The path difference at T is 5.0 3.0 = 2.0 m, the same as at Q, so we have destructive interference.
- (ii) The red curve (hyperbola) is the collection of points with the same path difference as that at R. It marks one point on the line TS_2 .

(iii) The path difference is the same as that at R i.e. $(2+\frac{1}{2})\lambda = \frac{5}{2} \times \frac{4}{3} \approx 3.3 \text{ m}$.